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Density functional theory is used to determine the possible

crystal structure of the CaSiO3 perovskites and their evolution

under pressure. The ideal cubic perovskite is considered as a

starting point for studying several possible lower-symmetry

distorted structures. The theoretical lattice parameters and the

atomic coordinates for all the structures are determined, and

the results are discussed with respect to experimental data.
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1. Introduction

CaSiO3 is the third most important component of the Earth’s

lower mantle, where, according to the current geophysical

models, it can account for as much as 7% in volume (Ring-

wood, 1975; O’Neill & Jeanloz, 1990; Ita & Stixrude, 1992).

Above 10 GPa and 1100 K, CaSiO3 has the ideal cubic

perovskite structure (Gasparik et al., 1994; Swamy & Dubro-

vinsky, 1997; Shim et al., 2000) with Pm�33m symmetry.

This phase is unquenchable, and at ambient conditions of

temperature and pressure it becomes amorphous (e.g. Liu &

Ringwood, 1975; Wang & Weidner, 1994). According to

different experimental studies (Shim et al., 2002) and theore-

tical calculations (Stixrude et al., 1996; Chizmeshya et al., 1996;

Akber-Knutson et al., 2002; Magyari-Köpe et al., 2002; Jung &

Oganov, 2005), at low temperature, CaSiO3 has a distorted-

perovskite structure, several tetragonal and orthorhombic

candidates being proposed. However, no structural refinement

of these possible modifications has been performed to date,

and there are still controversies related to the symmetry of

these phases.

In our previous paper (Caracas et al., 2005), we reported on

the implications of CaSiO3 in modeling the Earth’s lower

mantle, while in the present study we present a detailed

analysis of the crystallochemistry of CaSiO3 perovskites. We

start our analysis with the investigation of the phonon band

dispersions in the cubic phase at different pressures. We find

that the cubic structure exhibits unstable phonon modes at the

zone boundary, appearing between the high-symmetry points

R {1/2, 1/2, 1/2} and M {1/2, 1/2, 0}. The instability of the cubic

phase increases with pressure, the frequency of the unstable

phonon at R decreasing from 150i cm�1 at �5 GPa to

221i cm�1 at 164 GPa. The frequency of the LO (longitudinal

optic) unstable phonon at M slightly increases from 109i cm�1

at �5 GPa to 99i cm�1 at 164 GPa. These unstable modes are

characterized by rotations of octahedra in columns parallel to

the Cartesian axes. The unstable mode at M corresponds to in-

phase rotations, where all the octahedra in one column rotate

in the same direction, while the unstable mode at R corre-

sponds to out-of-phase rotations, where each octahedron

rotates contrary to all its neighbors. According to Glazer’s

(1972, 1975) notation, the first type of rotation, in-phase, is



designated by a plus sign, and the second, out-of-phase, by a

minus sign. Consequently, the a+b�c0 notation represents the

superposition of an in-phase rotation around the a axis and an

out-of-phase rotation around the b axis, with different

amplitudes. There is no rotation around the c axis. This

notation corresponds to a structure derived by the simulta-

neous condensation of one unstable phonon at R and one at

M. Glazer (1972, 1975) built all the possible distorted

perovskite structures based on such rigid octahedral rotations,

obtaining 26 structures by combining up to three out-of-phase

and/or in-phase rotations.

Further improvements of Glazer’s model were realized by

taking into account the group–subgroup relations between the

distorted structures (Howard & Stokes, 1998), or by consid-

ering only those generated by rotations of the same

magnitude around equivalent axes (Darlington,

2002). We base our exploration of the distorted

structures of CaSiO3 perovskite on the approach

proposed by Darlington (2002). Our analysis is thus

limited only to the structures that may result from the

condensation of the unstable phonon modes at R and

M, the largest distorted cell being a 2 � 2 � 2

supercell (Z = 8) of the cubic structure (Table 1). All

the theoretical structures listed in Table 1 are ener-

getically competitive and at high pressure slightly

lower than the cubic Pm3 phase. Condensations of

unstable phonon modes at points other than M and R

are certainly possible at any arbitrary commensurate

and/or incommensurate points on the MR line.

However, based on our results, we do not expect a

major energy lowering due to such condensations.

2. Computational details

All the calculations are based on the local density

approximation of the density functional theory

(Hohenberg & Kohn, 1964; Kohn & Sham, 1965), as

implemented in the PWSCF code (Baroni et al.,

2001). The PWSCF code is based on plane waves and

pseudopotentials. Within this approach, the wave-

functions describe only the valence and conduction

electrons, while the core electrons are taken into

account using pseudopotentials. We use Troullier–

Martins pseudopotentials, whose construction details

and reference electronic configurations are published

elsewhere (Karki & Wentzcovitch, 2003).

We determine the crystal structures using variable-

cell-shape molecular dynamics (Wentzcovitch, 1991).

This method allows the simultaneous determination

of both the unit-cell parameters and the internal

degrees of freedom (atomic coordinates) within an

ab initio approach. A fictitious mass is attributed to

the unit cell in order to apply the molecular dynamics

technique to both the cell and the atoms. Here these

dynamics are used in the damped form to search for

the lowest enthalpy configurations. We fully relax the

lattice parameters and the atomic positions. The

initially chosen space-group symmetries are naturally

preserved during the relaxation process leading to the final

lattice parameter and Wyckoff coordinates.

We use an 85 Rydberg (1 Rydberg = 13.605 eV) cut-off

radius for the plane-wave kinetic energy. The sampling of the

parent cubic Brillouin zone (BZ) is achieved by using a

primitive 4 � 4 � 4 grid of special k points (Monkhorst &

Pack, 1976). These parameters ensure an accuracy of the

calculations of better than 5 kbar in pressure and of the order

of 10 meV per molecule in energy. As we study different

structures, all derived from the cubic one, we use in all our

calculations BZ sampling schemes that are equivalent to the

4 � 4 � 4 grid of k points of the parent cubic structure. The

relation between the BZs follows the group–subgroup relation
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Table 1
Derivation of the distorted perovskite structures, the corresponding Glazer
notation, the number of molecules within the conventional unit cell, Z, the unit-
cell relation with respect to the cubic parent one, the grid of special k-points and the
grid shifts used in our calculations.

Symmetry Phonons Rotations Z Supercell k-points grid Grid shifts

Pm�33m – a0a0a0 1 1 � 1 � 1 4 � 4 � 4 0.5 0.5 0.5
I4/mcm R a0a0c� 4 21/2

� 21/2
� 2 2 � 2 � 2 0.5 0.0 0.5

0.0 0.5 0.5
Imma R,R a0b�b� 4 21/2

� 21/2
� 2 2 � 2 � 2 0.5 0.0 0.5

0.0 0.5 0.5
P4/mbm M a0a0c+ 2 21/2

� 21/2
� 2 2 � 2 � 4 0.5 0.0 0.5

0.0 0.5 0.5
I4/mmm M,M a0b+b+ 8 2 � 2 � 2 2 � 2 � 2 0.5 0.5 0.5
Im3 M,M,M a+a+a+ 8 2 � 2 � 2 2 � 2 � 2 0.5 0.5 0.5
P42nmc M,M,R a+a+c� 8 2 � 2 � 2 2 � 2 � 2 0.5 0.5 0.5
Pnma R,R,M a�a�c+ 4 21/2

� 21/2
� 2 2 � 2 � 2 0.5 0.5 0.0

Table 2
Special atomic positions in CaSiO3 perovskites.

Symmetry
Space
group Ca Si O

Pm�33m 221 1(b) (0.5 0.5 0.5) 1(a) (0 0 0) 3(d) (0.5 0 0)

I4/mcm 140 4(b) (0 0.5 0.25) 4(c) (0 0 0) 4(a) (0 0 0.25)
8(h) (x x+0.5 0.0)

Imma 74 4(e) (0 0.25 z) 4(a) (0 0 0) 8(g) (0.25 y 0.25)
4(e) (0 0.25 z)

P4/mbm 127 2(c) (0 0.5 0.5) 2(a) (0 0 0) 2(b) (0 0 0.5)
4(g) (x x+0.5 0)

I4/mmm 139 2(a) (0 0 0) 8(f) (0.25 0.25 0.25) 8(h) (x x 0)
2(b) (0 0 0.5) 16(n) (0 y z)
4(c) (0 0.5 0)

Im3 204 2(a) (0 0 0) 8(c) (0.25 0.25 0.25) 24(g) (0 y z)
6(b) (0 0.5 0.5)

P42/nmc 137 2(a) (0.75 0.25 0.75) 8(e) (0 0 0) 8(f) (x �x 0.25)
2(b) (0.75 0.25 0.25) 8(g) (0.25 y z)
4(d) (0.25 0.25 0.25 + z) 8(g) (0.75 y 0.5+z)

Pnma 62 4(c) (x 0.25 z) 4(a) (0 0 0) 8(d) (x y z)
4(c) (x 0.25 z)



that exists between the parent cubic and each of these lower-

symmetry structures. As they represent superstructures of the

cubic lattice, their BZ will be smaller than the parent cubic

one. Some of the k points from the first cubic BZ will find

themselves in the second BZ of the superstructure. Conse-

quently, these points will be folded back to the first BZ of the

superstructure. The high symmetry of the starting grid that

samples the parent cubic structure and the position of the BZs

of the superstructures with respect to the cubic one ensure the

superposition of the k points during folding, and thus a smaller

number of k points in the superstructure is needed. The

resulting k-point grids in the superstructures may be described

as several superposed grids, a common technique that allows a

maximum sampling of the BZ with a minimum cost (Froyen,

1992). This procedure also guarantees the accuracy and the

meaningfulness of the comparison between the different

polymorphs, as the reciprocal space is equally well sampled in

all the structures. The k-point grids used for each structure and

their shifts with respect to � are given in Table 1, while Fig. 1

presents a simplified model of their reduction.

3. Results and discussion

All the cubic, tetragonal and orthorhombic structures

obtained from condensation of the unstable phonon modes in

R and M have energy lower than or comparable to the ideal

cubic perovskite phase (at 160 GPa, the energy of the I4/mcm

structure that is the most stable is about 90 meV per molecule

below the energy of the cubic structure). These structures are

characterized by slight distortions, induced by the almost rigid

rotating octahedra. The structural resemblance of these

structures with the parent cubic phase, together with inherent

kinetic factors, made their experimental identification a diffi-

cult task (Shim et al., 2002).

Our theoretical results are summarized in Tables 2 and 3.

Table 2 lists the Wyckoff positions occupied by Ca, Si and O

atoms in each of the analyzed structures, while the evolution

with pressure of the internal degrees of freedom (positions not

fixed by symmetry) and of the lattice parameters is given in

Table 3. As an example, the crystal structures of the lowest-

energy polymorphs, I4/mcm, P42/nmc and Pnma, are

presented in Fig. 2.

The experimental measurements (Shim et al., 2002) show

lattice distortions corresponding to tetragonal structures

associated with c/a ratios slightly smaller than 1.0. According

to our theoretical results, all tetragonal structures, except

I4/mmm, have c/a ratios slightly larger than 1.0. The origin of
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Figure 1
Simple two-dimensional model of the relations between the Brillouin
zones of a parent structure and a derived superstructure, and the folding
of the k points from the second to the first BZ of the superstructure.

Figure 2
Crystal structure of the lowest-energy distorted modifications of CaSiO3.
The structures in the top row are viewed along the b axis, with a
horizontal, and those in the lower row along the a axis, with c horizontal.
From left to right, the structures of the I4/mcm, P42/nmc and Pnma
phases are shown.

Figure 3
Range of Si—O bond lengths in the cubic, tetragonal and orthorhombic
modifications of CaSiO3. The bonds in the cubic Pm�33m and tetragonal
I4/mcm phases are plotted for comparison.



the discrepancy could be due to 0 K calculations, as at finite T

the structure might be partially disordered.

The Si—O bond lengths lie in the range 1.75–1.87 Å at

0 GPa and 1.58–1.67 Å at 160 GPa, as shown in Fig. 3. Both

maximum and minimum bonds are recorded in P4/mbm. Fig. 3

also plots the position of the bonds in Pm�33m and

I4/mcm with respect to the whole range of computed Si—O

lengths. It is interesting to note that even if the tetragonal

I4/mcm modification has a density larger than the cubic

Pm�33m, the Si—O bonds in the former structure are longer

than those in the latter. Thus, the higher compaction of the

tetragonal phase is realized through octahedral rotations. The

difference in bond lengths that reflects an octahedral defor-

mation is about 0.02 Å in I4/mcm.

The evolution with pressure of the Si—O—Si angles in the

distorted structures is shown in Fig. 4. All the angles lie above
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Figure 4
Pressure evolution of the Si—O—Si interatomic angles.

Table 3
Lattice parameters (in Å) and the general atomic coordinates for the
analyzed CaSiO3 perovskites, as determined at different pressures.

P (GPa) 0 10 20 30 50 80 130 160

Pm�33m
a 3.5460 3.5019 3.4648 3.4314 3.3755 3.3082 3.2221 3.1804

I4/mcm
a 4.9812 4.9183 4.8597 4.8160 4.7348 4.6368 4.5111 4.4509
c 7.1820 7.0987 7.0191 6.9611 6.8527 6.7240 6.5607 6.4837
O x 0.2164 0.2159 0.2154 0.2149 0.2138 0.2124 0.2102 0.2090

Imma
a 5.0116 4.9479 4.8945 4.8485 4.7645 4.6671 4.5413 4.4801
b 7.0641 6.9739 6.8988 6.8355 6.7163 6.5802 6.4038 6.3185
c 5.0361 4.9763 4.9243 4.8815 4.8021 4.7112 4.5964 4.5398
Ca z 0.0020 0.0017 0.0014 0.0013 0.0010 0.0007 0.0004 0.0002
O1 y 0.0228 0.0226 0.0225 0.0225 0.0226 0.0230 0.0238 0.0241
O2 z 0.0439 0.0436 0.0435 0.0436 0.0440 0.0447 0.0464 0.0471

P4/mbm
a 4.8931 4.8349 4.7846 4.7402 4.6640 4.5717 4.4530 4.3954
c 3.7294 3.6773 3.6348 3.5972 3.5353 3.4620 3.3705 3.3267
O x 0.2072 0.2065 0.2059 0.2053 0.2043 0.2030 0.2013 0.2005

I4/mmm
a 7.1052 7.0194 6.9057 6.8714 6.7602 6.6205 6.4454 6.3581
c 7.0684 6.9830 6.9422 6.8370 6.7264 6.6007 6.4293 6.3422
O1 x 0.2338 0.2344 0.2349 0.2353 0.2360 0.2376 0.2385 0.2389
O2 x 0.2504 0.2504 0.2504 0.2504 0.2503 0.2503 0.2502 0.2502
O2 z 0.2666 0.2659 0.2654 0.2649 0.2642 0.2626 0.2616 0.2612

Im3
a 7.0933 7.0054 6.9301 6.8640 6.7517 6.6158 6.4443 6.3610
O y 0.2627 0.2622 0.2618 0.2613 0.2607 0.2599 0.2587 0.2581
O z 0.2367 0.2372 0.2377 0.2382 0.2389 0.2398 0.2411 0.2417

P42/nmc
a 7.0476 6.9583 6.8868 6.8139 6.6990 6.5601 6.3818 6.2954
c 7.1764 7.0913 7.0241 6.9557 6.8483 6.7203 6.5590 6.4815
Ca2 z 0.2509 0.2510 0.2509 0.2510 0.2509 0.2508 0.2510 0.2501
O1 x 0.0014 0.0015 0.0014 0.0016 0.0013 0.0012 0.0015 0.0001
O2 y 0.0326 0.0326 0.0326 0.0325 0.0326 0.0325 0.0325 0.0329
O2 z 0.0013 0.0014 0.0013 0.0015 0.0012 0.0011 0.0014 0.0001
O3 y 0.0326 0.0325 0.0325 0.0325 0.0326 0.0325 0.0325 0.0329
O3 z 0.0014 0.0015 0.0014 0.0016 0.0013 0.0012 0.0015 0.0001

Pnma
a 5.0083 4.9471 4.8934 4.8457 4.7650 4.6670 4.5414 4.4804
b 7.0858 6.9864 6.9049 6.8379 6.7193 6.5803 6.4044 6.3191
c 5.0243 4.9703 4.9214 4.8765 4.8020 4.7112 4.5954 4.5397
Ca x 0.5106 0.5072 0.5050 0.5048 0.5025 0.5012 0.5006 0.5004
Ca z 0.0022 0.0018 0.0015 0.0013 0.0011 0.0007 0.0004 0.0002
O1 x 0.2656 0.2610 0.2580 0.2578 0.2541 0.2519 0.2510 0.2507
O1 y 0.0214 0.0219 0.0221 0.0222 0.0225 0.0229 0.0236 0.0241
O1 z 0.2344 0.2390 0.2420 0.2423 0.2459 0.2481 0.2490 0.2493
O2 x 0.9983 0.9990 0.9994 0.9996 �0.0001 0.0000 0.0001 0.0001
O2 z 0.9584 0.9574 0.9570 0.9569 0.9562 0.9553 0.9539 0.9530

Table 4
The positions of the most intense powder diffraction peaks as simulated
based on the theoretical structures at 50 GPa.

The experimental values are interpolated from the spectra published by Shim
et al. (2002). The peak indexation corresponds to Pm�33m. The 2� peak position
is given in degrees.

Symmetry 110 111 200 210 211

Experimental 17.3 22.3 24.5 30.2
17.4 24.6 30.3

Pm�33m 17.1 21.0 24.3 29.8

I4/mcm 17.0 20.2 23.9 27.3 29.6
17.2 21.0 24.5 27.4 30.0

Imma 17.0 20.0 24.2 26.3 29.7
17.1 20.9 24.4 26.5 29.9

21.0 30.0

P4/mbm 16.9 19.6 23.2 29.2
17.5 21.0 24.6 30.2

30.5

I4/mmm 17.1 19.1 22.7 27.1 28.5
17.1 21.0 24.4 27.2 29.6

25.7 31.0

Im3 17.1 21.0 24.3 27.2 29.8

P42/nmc 17.0 19.2 23.9 26.9 29.6
17.2 21.0 24.5 27.3 30.0

Pnma 17.0 20.0 23.2 26.3 29.7
17.1 20.9 24.4 26.5 29.7

29.9



155�, with the relatively weak pressure dependence. The

smallest Si—O—Si angles are obtained in P4/mbm and

I4/mcm, both with a decreasing trend under pressure. The Si—

O—Si angles are directly related to the octahedral rotations

induced by the phonon instabilities only for pure in-phase and

pure out-of-phase rotations in the P4/mbm and I4/mcm

structures, respectively. In the other cases, the coupling

between the unstable phonon modes as well as the lattice

deformations allow us only to estimate the octahedral rota-

tions to less than 8�.

Based on the theoretically determined crystal structures we

may simulate the powder diffraction pattern and compare it

with the experimental data. The experimental powder

diffraction pattern (Shim et al., 2002) recorded at 45.8 GPa

shows weak splittings of the 110, 200 and 211 cubic peaks

occurring around 2� = 17.4, 24.6 and 30.3�, respectively. Fig. 5

shows the simulated powder diffraction patterns for 2� ranging

between 15 and 32.5� at 50 GPa for all the studied structures,

while Table 4 details the positions of the most intense peaks.

The I4/mmm structure shows the most complex diffraction

pattern, while the cubic Im3 phase, because of the symmetry,

does not show any splitting. The P4/mbm tetragonal phase

exhibits a large splitting of the cubic 200 peak. In the

orthorhombic phases, Pnma and Imma, the peak splittings are

small and they contribute mainly to the peak broadening. The

other tetragonal phases, I4/mcm, P4/mbm and P42/nmc,

exhibit large splittings.

In general, with respect to the experimental pattern we

observe various differences in the splitting magnitude and the

peak intensity for all the theoretical structures. These discre-

pancies are associated with theoretical distortions from the

ideal cubic symmetry that are larger than the experimental

ones, owing to the neglect of the thermal effects in our

calculations and the presence of dynamical or static disorder

exhibited by the SiO6 octahedra in the real structure of

CaSiO3. However, the theoretical structures we report in this

study can be used as starting points in the structural refine-

ments of the CaSiO3 perovskite structure. The detailed theo-

retical analysis of the different possible space groups and of

the distortions associated with these represent an important

input for experimentalists attempting to solve the structures of

CaSiO3 perovskites at high pressures and temperatures from

diffraction data.
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Figure 5
Theoretical powder diffraction patterns for different polymorphs of the CaSiO3 perovskite.



Calculations were performed using the PWSCF package,

http://www.pwscf.org, which is now part of the Quantum-

ESPRESSO package (opEn-Source Package for Research in

Electronic Structure, Simulation, and Optimization; http://

www.quantumespresso.org). This is an initiative of the

DEMOCRITOS National Simulation Centre (http://

www.democritos.it) for the development of open-source

scientific software. This research was supported by the NSF

grants EAR-0135533 and EAR-0230319, and the Minnesota

Supercomputing Institute. We thank B. B. Karki for the

pseudopotentials and A. Darlington for fruitful discussions

related to the lower-symmetry phases.
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